Percutaneous VSD closure: Problems in the mid- and long-term

Lee Benson MD Professor Pediatrics (Cardiology) Director, Cardiac Diagnostic & Interventional Unit The Hospital for Sick Children Toronto, Canada

The 3rd Congress of Congenital Heart Disease

Ventricular Septal Defect from A to Z

January 09 – 11, 2013 Sheraton Hotel, Ho Chi Minh City, Vietnam

What post-procedural complications occur?

Residual shunt
Interference with AV or semilunar valve function
Arrhythmias...particularly cAVB
Embolization
Hemolysis

What factor(s) influence adverse post-procedural events?

Anatomical
Patient selection (age, weight, hemodynamics)
Device (design, materials)

Perimembranous defects - anatomical considerations

- Location
 - Under chordae of TV
 - Rim between Ao V and defect can be non-existent
 - Bundle branch and AV node are near the defect rim
- Size of the defect
- Septal wall thickness
- Aneurysms

Perimembranous defects - complications

- Complete atrioventricular block (cAVB)
 - Early or late
 - Transient or permanent
 - Acute treatment options:
 - Abort procedure
 - Corticosteroids
 - Permanent pacemaker

Perimembranous defects - complications

- Complete atrioventricular block
 - Early or late
 - Transient or permanent
 - Acute treatment options:
 - Abort procedure
 - Corticosteroids
 - Permanent pacemaker
- Aortic or tricuspid insufficiency

Defects amenable to percutaneous closure

Apical, outlet and mid-muscular – technically relatively easy to close with devices

Post -MI VSD - complex procedure - high failure rate: dependent on patient hemodynamic status

Post operative residual defects - achievable closure, dependent on anatomical details

Perimembranous - more complex with greater incidence of acute and longer term complications due to anatomical relationships

Established Indications for VSD closure

Left - to - right shunt >1.5:1

LV enlargement z-score >2

Increased PAP

Intractable CHF

Failure to thrive

Previous infective endocarditis (second episode)

Other Indications for VSD closure

Psychosocial impact on patient and family

Avoid stigmata of having a heart defect

Employability

Health insurance

Heavy vehicle license

Sports participation

Devices available for percutaneous closure

Risks associated with pmVSD Closure

- Surgical closure
 - cAVB occurrence reported at ~1%
 Tucker 2007 JACC: 4432 pts with pVSD, 1.1% PPM
 Risk factors Down syndrome (41% vs. 18%)
 Younger age 14 vs. 24 months
 If weight >8 kg incidence only 0.8% PPM
 Andersen 2006 ATS: 996 isolated pVSD, 0.7%
 - Significant residual VSD 1-5%
 - Reoperation 2%
 - Mortality 0.5%

Age distribution of surgical pmVSD closure

Carminati et al European Heart Journal (2007) 28, 2361–2368

Table 1 General characteristics	23 centres	Overall	12.7%
Number of patient	430	- Significant	6.5%
Median age and age distribution	8 years (0.4-70	death	0.2%
<u> </u>	vears)	vascular	0.7%
<2 years	77 pts (18%)	hemolysis	12%
2-6 years	105 pts (24%)		
7-14 years	103 pts (24%)	intection	0.5%
>14 years	145 pts (34%)	embolization	0.9%
Weight	28 (4-124 kg)	TR	6.0% (mild/trival)
VSD size			3.3% (OD is 2 std)
Echo size	7 (3-22 mm)	AR	3.3 % (OR IN 2 pts)
Angio size	7 (2.5–18 mm)		
QP/Qs	2.1 (1.1-8)	Residual shunt (requiring	$\alpha O R = 0.7\%$
Defect types (muscular, pm, residual			
post-operative)			
Perimembranous	250	Arrhythmias	
Muscular	119		
(mid muscular 83, apical 20, high/outle	et 16)	tachyarrhythmias	5 0.7%
Multiple Residual post surgery	10	early cAVB	2.8%
Defect measure (by TEE)	40		
Median	7 (range $3-22$)		
Device used	7 (Talige 5-22)	6 /12 requiring PPM , <1	week after
Membranous Amplatzer	213	implant presenting with	<i>Cuncona</i>
Muscular Amplatzer	151	implum presenting with	i syncope,
PDA Amplatzer	12	asystole	
ASD Amplatzer	7		
Starflex	7		
Coil	9		

Complications

Carminati et al European Heart Journal (2007) 28, 2361–2368

Table 1 General characteristics	
Number of patient	430
Median age and age distribution	8 years (0.4-70 years)
<2 years	77 pts (18%)
2-6 years	105 pts (24%)
7-14 years	103 pts (24%)
>14 years	145 pts (34%)
Weight	28 (4-124 kg)
VSD size	
Echo size	7 (3-22 mm)
Angio size	7 (2.5-18 mm)
QP/Qs	2.1 (1.1-8)
Defect types (muscular, pm, residual	
post-operative)	
Perimembranous	250
Muscular	119
(mid muscular 83, apical 20, high/outlet 16)	
Multiple	16
Residual post-surgery	45
Defect measure (by TEE)	
Median	7 (range 3-22)
Device used	, <u> </u>
Membranous Amplatzer	213
Muscular Amplatzer	151
PDA Amplatzer	12
ASD Amplatzer	7
Starflex	7
Coil	9

Follow up

yr (range 6/12 to 10 yr)					
o death	1 p†				
o late cAVB	4 pt (4, 7, 12, 18 mons p/c) 2 – syncopal 2 – asymptomatic				

95% complete closure in FU

Carminati et al European Heart Journal (2007) 28, 2361-2368

Tab	ole 3 Characteristics of patients with complete atrio-ventricular block								
Pati	ient	Age (years)	Defect type	Post-surgical defect (yes/no)	Device type	Measure (mm)	Transient (Yes/No)	Therapy	Timing of occurrence post-procedure
1		4	pmVSD	No	A-ASD	4	No	Stop kt-surgery	
2		2	pmVSD	No	A-pmVSD	12	No	PM	1 day
3		11	pmVSD	No	A-pmVSD	8	No	PM	5 days
4		55	mVSD	Yes	A-mVSD	10	Yes		
5		3.4	pmVSD	No	A-pmVSD	8	Yes		
6		4.2	pmVSD	No	A-pmVSD	8	No	PM	5 days
7		8.1	pmVSD	No	A-pmVSD	6	No	PM	4 days
8		11.6	mVSD	Yes	A-pmVSD	10	Yes		
9		5.2	pmVSD	No	A-pmVSD	10	No	PM	3 days
10		1.5	mVSD	Yes	A-PDA	5/4	No	PM	5 days
11		1.2	mVSD	No	A-PDA	8/6	Yes	\mathbf{V}	
12		1	pmVSD	no	A-pmVSD	8	Yes	Stop kt-surgery	
13		36	pmVSD	no	A-pmVSD	16	No	PM	7 months
14		1.2	pmVSD	No	A-pmVSD	8	No	PM	18 months
15		2.7	pmVSD	No	A-pmVSD	12	No	PM	12 months
16		2.6	pmVSD	No	A-pmVSD	8	No	PM	4 months

A-mVSD, Amplatzer muscular VSD occluder; A-pmVSD, Amplatzer perimembranous VSD occluder; A-ASD, Amplatzer atrial septal defect occluder; A-PDA, Amplatzer PDA occluder; PM, pace-maker implantation.

cAVB - 3.7% overall, PPM - 2.3% both early & late after implant

Carminati et al European Heart Journal (2007) 28, 2361-2368

Multivariable analysis: factors associated with occurrence of complications: age & weight at the time of the procedure

The Chinese experience new implants for pmVSD

Modified double disk occluder - MDVO Shanghai Shape Memory Alloy Ltd, China

The Chinese experience new implants for pmVSD

Inclusion criteria for closure oage ≥3 years old omaximum VSD diameter 16 mm by TTE odefect located 9 to 11 o'clock in the short axis parasternal view oleft to right shunt oPAP <70 mm Hg by TTE

Excluded were patients with • AoV prolapse • severe AR • Right-to-left shunt • Cyanosis • PAP >70 mm Hg • NYHA class IV

Qin et al AJC 2008

The Chinese experience with newer implants for pmVSD

o5 centres in China, 412 patients, ages 3 -65, mean 16 years
oVSD's 3-18 mm

•Devices used were 4 - 20 mm, symmetric occluders in 312 pts,

asymmetric occluders in 86 pts

 During and after device implant, 10 had LBBB and 16 RBBB...all recovered in <1 week

097% successful closure

o6 patients (4 children and 2 adults) had cAVB (1.4%), recovered within

3 weeks with temp pacing and steroids •Dislodgement rare: 3/412 (3/86; 0.03%) implants...asymmetric device •No further complications in 0.5 to 2 years follow up

Qin et al AJC 2008

4	Į		a star	ſ	
1	N.	b		p/	N. N. N.
	1		6		

Table 1						
Clinical	charateristics	of	patients	(n	=	412)

Gender	
Men	202 (49.0%)
Women	210 (51.0%)
Age (yrs)	16.4 ± 9.1
<15	228 (55.3%)
≥15	184 (44.7%)
Pulmonary to systemic flow ratio	1.9 ± 0.4
Pulmonary pressure	
<40 mm Hg	296 (71.8%)
40 to 70 mm Hg	116 (28.2%)
Defect diameter by ventriculography (mm)	5.0 ± 2.7
Device diameter (mm)	7.1 ± 3.6
Rim below aortic valve (mm)	3.1 ± 1.2
Defect shape by ventriculography	
Infundibular	230 (55.8%)
Aneurysmal	96 (23.3%)
Tubular	49 (11.9%)
Window-like	37 (9.0%)

Qin et al AJC 2008

Risk Factors and Outcomes of Post-Procedure Heart Blocks After Transcatheter Device Closure of Perimembranous Ventricular Septal Defect yang JACC CV Interv 2012

opmVSD closure in 228 patients

•Heart block occurred in 33 (14.5%) cases and average 3.0 days after the procedure

• The 3 cases with 3rd -degree AVB developed progressively from either a complete RBBB

with a left anterior hemiblock or

cLBBB with a 1st-degree AVB

High-degree AVB in these 4 patient
 reverted to the NSR after
 administration of IV hydrocortisone
 and application of a temporary PM

 Table 1. Number of Cases That Developed Heart Blocks After Closure

 of pmVSD

			Cases (n)	Average Time of Emergence of PPHBs (Days)
	RBBB	57.6%	19	1–6
	CRBBB		10	1–5
nts	IRBBB		9	1–6
	LBBB	24.2%	8	1–5
	CLBBB		3	1–3
	ILBBB		5	2–5
,	AVB	18.2%	6	3–7
	First-de	gree AVB	1	3
	Second-	degree AVB	2	3
	Mobit	tz type 1	1	3
	Mobit	tz type 2	1	3
	Third-de	egree AVB	3	4–7
	Total		33	

Risk Factors and Outcomes of Post-Procedure Heart Blocks After Transcatheter Device Closure of Perimembranous Ventricular Septal Defect

•Heart block reverted to normal in 21 prior to hospital discharge

012 cases (2-LBBB, 10-RBBB) did not recover by time of D/C...3 by 3 months follow up

•Follow up time was 58 months (83% completed follow up)

Risk factors for HB	Patients With No PPHB	Patients With PPHB	
	(n = 195)	(n = 33)	p Value
Age, yrs	13.6 ± 10.2	15.1 ± 10.9	0.71
Weight, kg	38.8 ± 18.9	40.2 ± 18.8	0.38
DLRD-SLTV, mm	3.8 ± 1.6	2.3 ± 0.6	<0.01
DAVD, mm	3.2 ± 1.5	3.9 ± 1.3	0.03
Diameter of pmVSD, mm	5.4 ± 2.1	5.3 ± 3.3	0.95
AVSDOs/SVSDOs*	91/104	15/18	0.90
SOD, mm	7.4 ± 2.6	8.8 ± 4.5	0.07
DDOV, mm	2.0 ± 0.7	3.5 ± 1.5	<0.01
PASP, mm Hg	31.8 ± 6.0	32.2 ± 7.0	0.13
LVDD before procedure, mm	43.5 ± 7.8	45.1 ± 6.9	0.69
LVDD after procedure, mm	41.3 ± 6.8	42.9 ± 6.9	0.66
Procedure time, min	86.5 ± 25.1	89.5 ± 29.8	0.52
Fluoroscopy time, min	18.2 ± 8.4	19.2 ± 11.2	0.22

Anatomical and device characteristics

DAVD the aortic value to the defect DDOV diameter difference between the occluder and VSD DLRD-SLTV the distance from lower rim of the

defects to the septal leaflet of the TV SOD size of device

Why the difference in incidence of cAVB?

Age:	Most patients were adults or older children
Anatomy:	In children, device/ventricular septum area is larger
Device design:	Waist is longer in the MDVO than the Amplatzer occluder (2 to 2.5 mm <i>vs.</i> 1.5 mm)
Risk of cAVB:	
Age:	children <10 years
Anatomy:	true pmVSD, location of penetrating bundle to defect margins
Technical:	crossing the defect with difficulty or development of right bundle block (and left anterior hemiblock) during the procedure

AMPLATZER[®] Membranous VSD Occluder 2

Promotes Closure and Stability

- Polyester-filled waist and discs
 promotes closure of the defect
- Inner braid layer and LV disc shape promotes stability

AMPLATZER[®] Membranous VSD Occluder 2

Radial Force

Device Stability

Clamp Force

Problems in assessing complications and outcomes

Inconsistent definition of anatomy: are you closing a.... pmVSD muscular defect: in trabecular septum muscular outlet infundibular intracristal a VSD with aneurysm

Age and weight of patients treated

Indications for intervention

Despite these inconsistencies in assessing outcomes

Transcatheter techniques have improved due to a better understanding of:

anatomy improved device design recognition of potential at risk populations

Cám ơn

Thank you

Incidence of Complete AV Block (cAVB)

Source	Incidence	Outcome
Xunmim et al, Int J Cardiol 2007 (China)	1/72 (1.4%)	Transient
Butera G et al, JACC 2007 (Milan)	3/87 (3.4%)	SX or PPM
Pedra CAC et al, J Invasive Cardiol 2008 (Brasil)	1/39 (2.6%)	PPM
Zhou J et al, Clin Cardiol 2008 (China)	4/168 (2.4%)	Transient
Oses P et al, Ann Thorac Surg 2010 (Montreal)	2/35 (5.7%)	PPM
Zuo J et al, Am J Cardiol 2010 (China)	6/294 (2.0%)	SX or PPM
Yang R et al, Cath Cardiovasc Intervent 2011 (China)	1/60 (1.6%) [13 transient]	PPM
US Phase I Trial	2/35 (5.7%)	PPM
Survey - JLB 2007	12/486 (2.5%) [6 transient]	PPM
Tucker E et al, JACC 2007 <u>Surgical</u> >8kg Multicenter, PCCC	13/1739 (0.8%) [3 late]	РРМ

AMPLATZER[®] Membranous VSD Occluder I

Had an eccentric shape, with the distal (LV) disk exceeding the connecting waist by 1 mm in its superior part and by 5.5 mm in its inferior part
 Proximal (RV) disk 2-mm l>the connecting waist, which was only 1.5 mm in length

• Available sizes range from 4 to 18 mm

Complete heart block

